Hipot testers usually connect one side of the supply to safety ground (Earth ground). The other side of the supply is connected to the conductor being tested. With the supply connected like this there are two places a given conductor can be connected: high voltage or ground.
When you have more than two contacts to be hipot tested you connect one contact to high voltage and connect all other contacts to ground. Testing a contact in this fashion makes sure it is isolated from all other contacts.
If the insulation between the two is adequate, then the application of a large voltage difference between the two conductors separated by the insulator would result in the flow of a very small current. Although this small current is acceptable, no breakdown of either the air insulation or the solid insulation should take place. Therefore, the current of interest is the current that is the result of a partial discharge or breakdown, rather than the current due to capacitive coupling.
The test duration must be in accordance with the safety standard being used. The test time for most standards, including products covered under IEC 60950, is 1 minute.
A typical rule of thumb is 110 to 120% of 2U + 1000 V for 1–2 seconds.
Most modern hipot testers allow the user to set the current limit. However, if the actual leakage current of the product is known, then the hipot test current can be predicted.
The best way to identify the trip level is to test some product samples and establish an average hipot current. Once this has been achieved, then the leakage current trip level should be set to a slightly higher value than the average figure.Another method of establishing the current trip level would be to use the following mathematical formula: E(Hipot) / E(Leakage) = I(Hipot) / 2XI(Leakage)
The hipot tester current trip level should be set high enough to avoid nuisance failure related to leakage current and, at the same time, low enough not to overlook a true breakdown in insulation.
The majority of safety standards allow the use of either ac or dc voltage for a hipot test.
When using ac test voltage, the insulation in question is being stressed most when the voltage is at its peak, i.e., either at the positive or negative peak of the sine wave.Therefore, if we use dc test voltage, we ensure that the dc test voltage is under root 2 (or 1.414) times the ac test voltage, so the value of the dc voltage is equal to the ac voltage peaks.
For example, for a 1500-V-ac voltage, the equivalent dc voltage to produce the same amount of stress on the insulation would be 1500 x 1.414 or 2121 V dc.